Digital Receiver for Interference Suppression in Microwave Radiometry

NASA Earth Sun System Technology Conference Presentation B6P3

Joel T. Johnson

Department of Electrical and Computer Engineering

ElectroScience Laboratory

The Ohio State University

Acknowledgments: S. Ellingson (Virginia Tech), G. Hampson, A. Gasiewski (NOAA/ETL), B. Guner, N. Niamsuwan, R. Krishnamachari

29th June 2005

Digital Receiver With Interference Suppression for Microwave Radiometry

PIs: Joel T. Johnson (Ohio State) and Steven W. Ellingson (Virginia Tech)

Objectives

- Future sea salinity and soil moisture sensing missions use L-Band microwave radiometry
- RF interference is a major problem and limits useable bandwidth to 20 MHz.
- · An interference suppressing radiometer could
 - · reduce RFI effects on these systems
 - allow operation in a larger bandwidth for more accurate moisture/salinity retrievals
- Project developed a radiometer digital
 backend including real-time removal of time
 Accomplishments
 and/or frequency localized RFI sources

Virginia

200 MSPS
10 bit
ADC's
Implemented in
Altera FPGA's
Real-time
"pulse blanking"
algorithm

Digital f Itering / 1 K FFT Spectral

1 K FFT = high pulse blanking processing / integration

RFI removal

- · Receiver prototypes developed; sample 100 MHz bandwidth with real-time pulse blanking and 1K FFT
- Demonstrated at Arecibo radio observatory and in local observations of water pool and sky targets
- · Results qualitatively show significant RFI mitigation and advantages of high spectral resolution
- · RFI surveys at L-band (including airborne measurements) completed under project support
- · System developed can be applied in other RF bands: NPOESS sponsored project using this system

 $TRL_{in} = 3$; $TRL_{out} = 4$

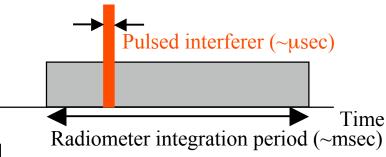
Tech: Sudjest took in http://cel.@Missighetaitgredu/~rstheory/iip/docsery.html

Earth-Sun System Technology Off

rroposar to utilize these technologies at L-band in the HYDROS program under evaluation

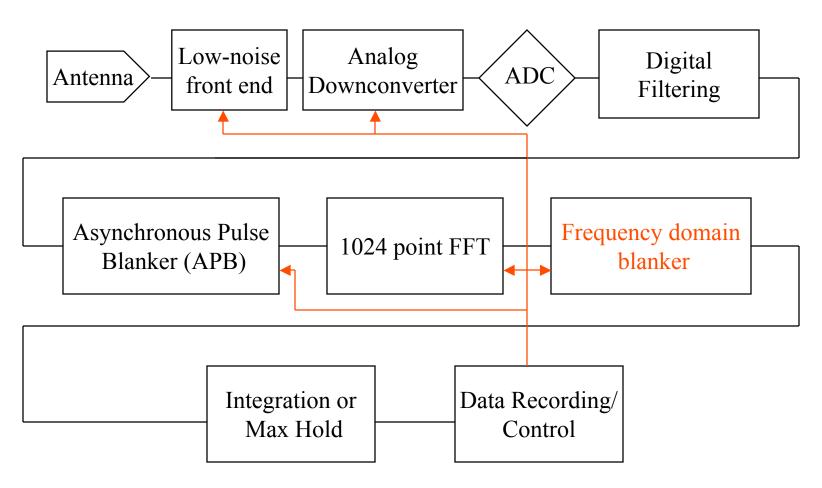
Outline

- Introduction and system overview
- Arecibo and local sky observations
- Airborne observations at C-band
- Space deployment issues

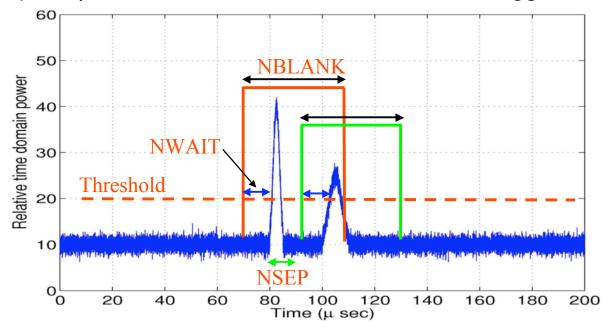

RFI Issues for Microwave Radiometers

- A microwave radiometer is a sensitive receiver measuring naturally emitted thermal noise power within a specified bandwidth
- Human transmission in many bands is prohibited by international agreement; these are the "quiet bands" ideal for radiometry
- L-band channel quiet band is 1400-1427 MHz: larger bandwidth would improve sensitivity if RFI can be addressed. Ocean salinity missions require extremely high sensitivity. No protected bands at C-band.
- Even within quiet band, RFI has still been observed possibly due to filter limitations or intermodulation products
- Many interferers are localized either in time or frequency: should be relatively easy to detect and remove with an appropriate system

System Overview

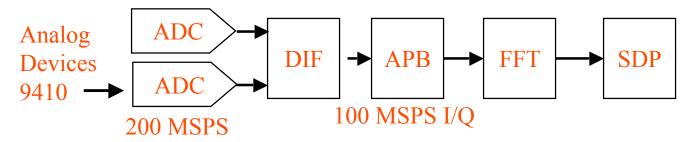

- Properties of traditional radiometer:
 - very "slow" instrument
 - power integrated for msec before being digitized

- a single, large bandwidth channel
 - susceptible to narrow band interference
- Our design uses a digital receiver for rapid sampling
 - can mitigate temporally localized RFI
- Our design performs a 1024 point FFT operation
 - can mitigate spectrally localized RFI
- Processor operates in real time to reduce final data rate
 - implemented in hardware (FPGA's)
- L-Band Interference Suppressing Radiometer (LISR)


System Block Diagram

APB algorithm

 APB updates mean/variance of incoming time domain signal; a sample > β standard deviations above the mean triggers blanker



- Parameters are threshold (β), blanking window size (NBLANK), pretrigger blanking region (NWAIT), and minimum delay between blanking events (NSEP)
- Data zeroed when blanked; effect of this on calibration corrected later

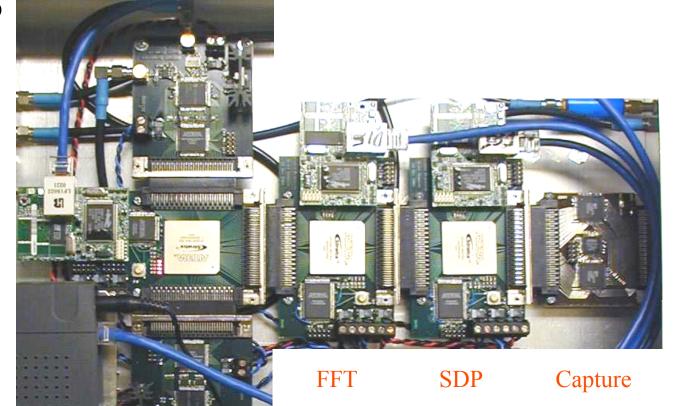
Digital Back-End

 System design includes digital IF filtering (DIF), asynchronous pulse blanker (APB), FFT stage, and spectral domain processor (SDP)

- LISR2: Altera "Stratix" FPGA's: apprx 10000 LE, \$260.
 - LISR3: one Stratix FPGA: apprx 30000 LE, \$950
- Microcontroller interface via ethernet for setting on-chip parameters
 - Possible modes:
 - Direct capture of time domain data, sampled every 10 nsec
 - Integration, blanker on/off, integration lengths 0.01 to 21 msec
 - Max-hold, blanker on/off

LISR Implementation

Modular form used for processor boards: note microcontrollers


EEPROM's on each card for autoprogramming of FPGA's on power-

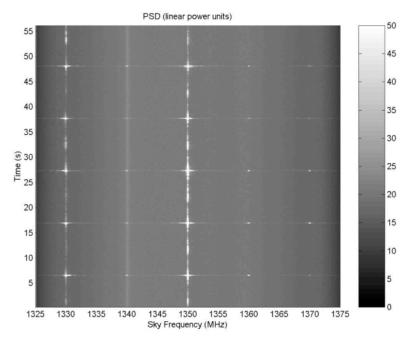
up

ADC

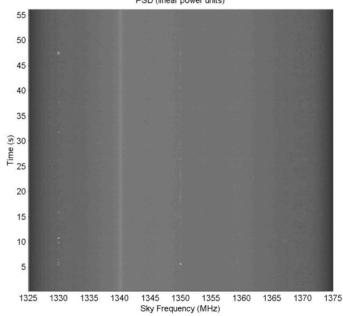
DIF/ APB

ADC

Outline

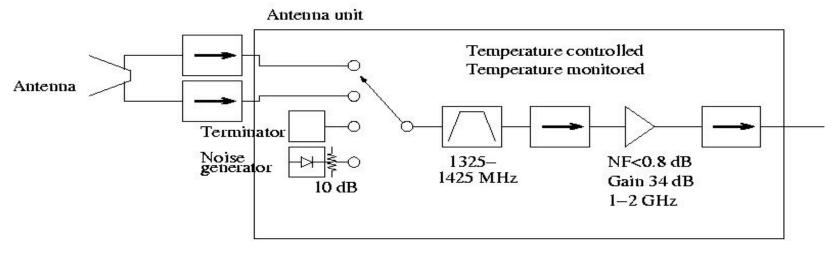

- Introduction and system overview
- Arecibo and local sky observations
- Airborne observations at C-band
- Space deployment issues

LISR early result: Blanking a Dual Frequency Radar at Arecibo


The radio telescope at Arecibo, PR suffers from RFI from distant ground-based air search radars; LISR co-observed on 11/3/02

1325-1375 MHz spectra including digital IF, APB, FFT, and integration (42 msec)

Before: ATC radar pulses visible

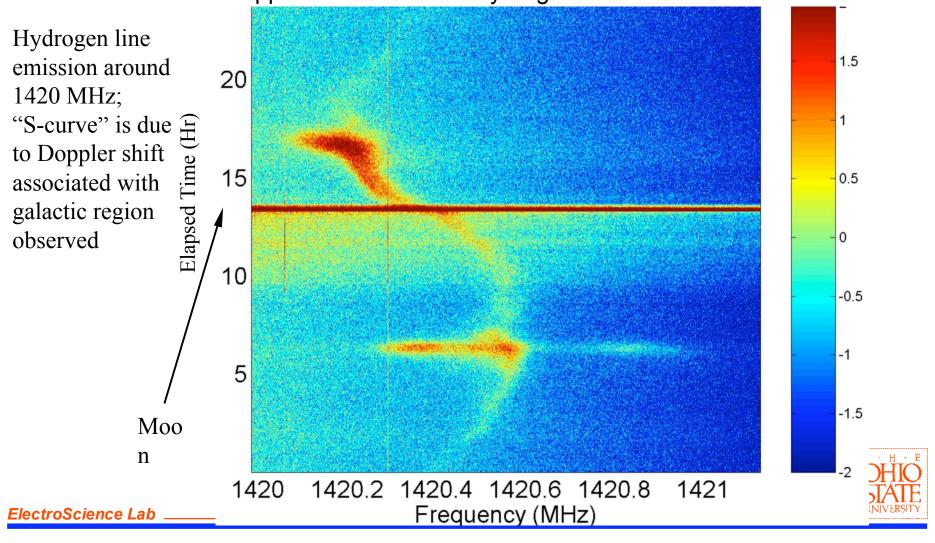


After: APB removes radar

Antenna/Front End Unit for Local Sky Obs

Front end Tsys approx. 200K neglecting antenna

Observing in band1325-1425 MHz; local ATC radar at 1331 MHz


Mounted on 3 m dish outside laboratory

Observation of astronomical sources and their variation with time

Sky Observation Verification

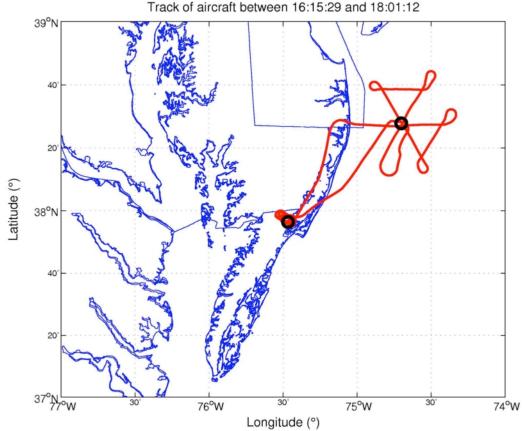
 Software FFT's allow very high spectral resolution (~4 kHz); sufficient to observe Doppler shift of neutral Hydrogen line

LISR3 Sky Observations Using IIP Front End: Early results

Outline

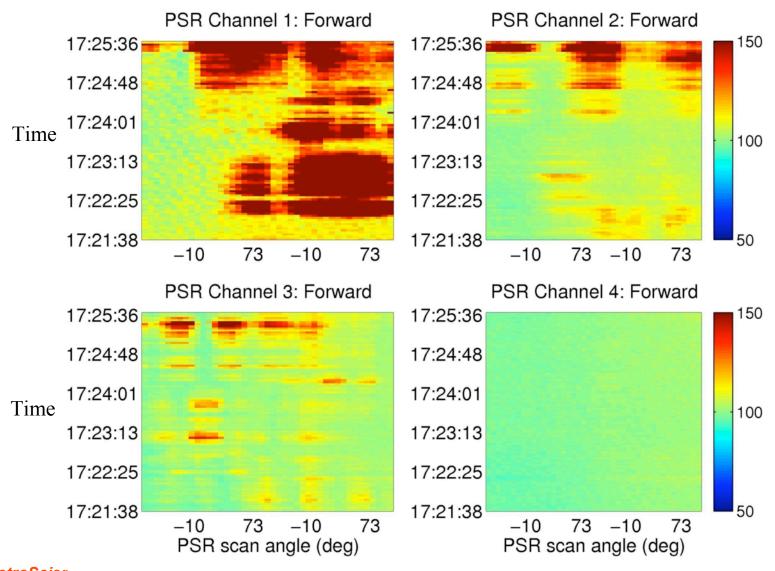
- Introduction and system overview
- Arecibo and local sky observations
- Airborne observations at C-band
- Space deployment issues

Airborne Observations at C-band: CISR


- NPOESS IPO sponsored project joint with NOAA/ETL using Polar Scanning Radiometer (PSR) system
- PSR provides antenna, front end, and tuned downconverter for CISR digital backend (based on LISR implementation)
- System provides tuned observation from 5.5-7.7 GHz at C-band; possible to calibrate using PSR calibration scheme
- First deployment in SMEX04 campaign (August 04), followed by the AASI04 campaign (Oct-Nov 04)
- Results are relevant for design of the CMIS C-Band channel; multiple analog sub-bands have been proposed as a mitigation scheme

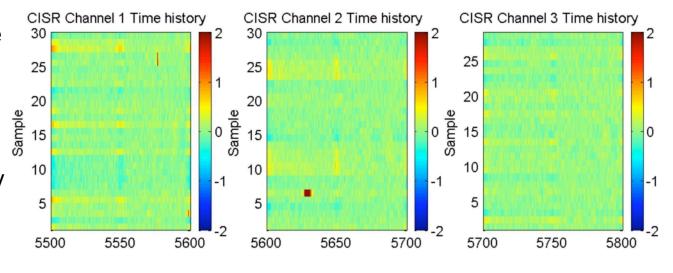
CISR Example: AASI04 Test Flight

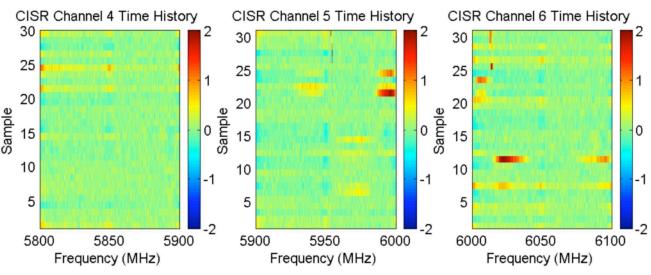
- The largest CISR dataset is from a test flight on October 8th, 2004 in preparation for the AASI04 campaign
- Note PSR includes 4 analog C-band channels for RFI mitigation (5.8-6.2, 6.3-6.7, 6.75-7.1, 7.15-7.5 GHz)
- Comparison of PSR/ CISR data enables test of digital vs. analog methods


 Use NOAA/ETL algorithm for RFI removal in 4 sub-band data

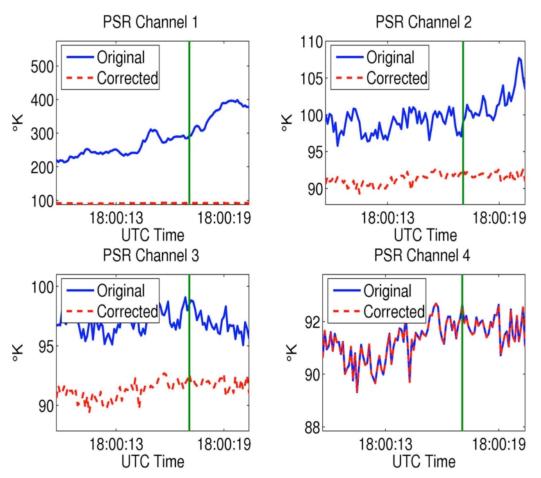
Circles in Figure mark WFF and NDBC Buoy

PSR Images: AASI04 Test Flight over Buoy

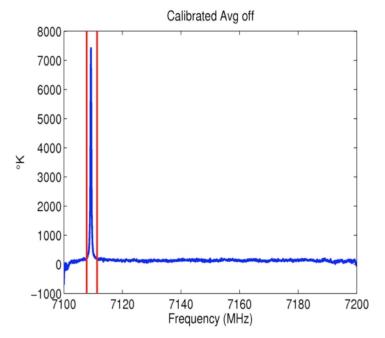

ElectroScierice Las


Corresponding CISR Data (to 6.1 GHz)

Provides precise knowledge of RFI center frequency


Allows possibility of frequency domain blanking to remove RFI

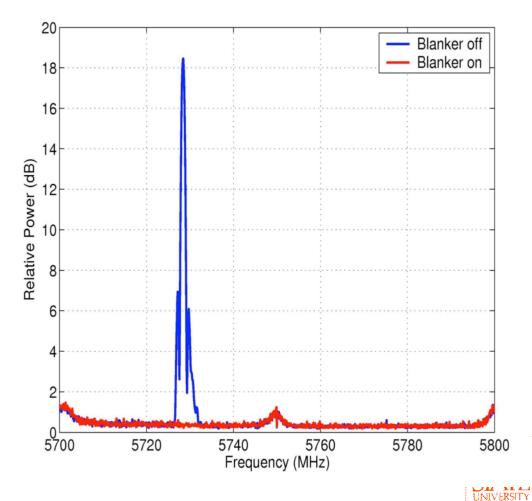
Calibrations
show frequency
domain blanking
effective against
narrowband RFI



CISR Advantages over PSR

PSR 4 x400 MHz channels show strong RFI; 4 channel algorithm chooses channel 4 (least corrupted) as correct

Calibrated CISR data for the point marked with green line shows narrowband RFI in PSR channel 4; calibration shows contribution ~4-5K to PSR



ElectroScience Lab

Use of APB at C-band

- APB on/off data was recorded by CISR throughout C-band
- Results >5.8 GHz show no influence of blanker
- Results < 5.8 GHz show strong influence of blanker
- As expected from freq.
 allocations in US

Maximum raw data observed 5.7-5.8 GHz

ElectroScience Lab

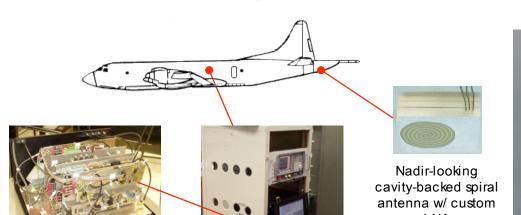
Outline

- Introduction and system overview
- Arecibo and local sky observations
- Airborne observations at C-band
- Space deployment issues

Space Deployment

- Three clear issues: (i) availability of space-qualified hardware,
 (ii) algorithm/environment issues, (iii) architecture/datarate issues
- (i) The first is easy: rad-tolerant FPGA's and ADC's of similar size and performance already available
 - redundant programming further reduces failure rate
- (ii) Algorithm issues: pulse-blanking and channelization appropriate only for time/frequency localized RFI; other types not removed
 - Need detailed information on RFI environment to design appropriate algorithms
 - Airborne RFI surveys performed as part of the project
 - L-band Interference Surveyor/Analyzer (LISA)

LISA: L-Band Interference Surveyor/Analyzer


Max Hold, Ant

Average, Ant

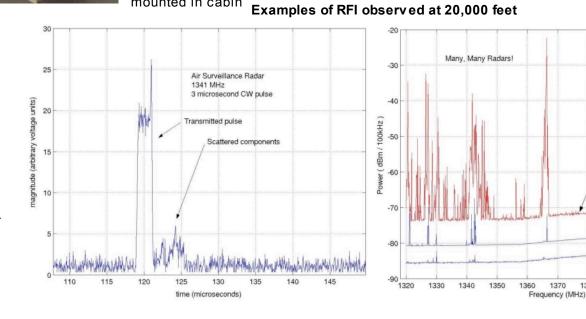
Average, Cal

minus 5 dB

S.W. Ellingson, J.T. Johnson, and G.A. Hampson, The Ohio State University

RF distribution, antenna unit control & coherent sampling subsystem

(RFI)



NASA's P-3 Orion Research Aircraft

Maiden LISA Flight: January 2, 2003 from Wallops Island, VA

LISA co-observes with existing passive microwave sensors to identify sources of damaging radio frequency interference

- 1200-1700 MHz using broadbeam spiral antenna
- Spectrum analyzer for fullbandwidth monitoring of power spectral density
- 14 MHz (8+8 bit @ 20 MSPS) coherent sampling capability for waveform capture and analysis
- Flexible script command language for system control & experiment automation

Space Deployment (cont'd)

- (iii) Even for time/frequency blanking only, there are architecture/datarate issues that need to be explored:
- On/off board frequency blanking
 - Off board more flexible, but must downlink all channels
 - On board allows a larger number of channels
- FFT versus channelization filters: choice in terms of hardware size depends on number of sub-channels desired
- Number of channels needed: depends on knowledge of RFI environment
- Gains from oversampling input bandwidth: in case RFI enters from filter stop-band

Conclusions

- Our work has provided the first demonstration of the use of digital receivers for radiometer backends to provide RFI suppression
- Results qualitatively show the success of the algorithms implemented
- C-band results show that a digital receiver backend can achieve improved RFI removal compared to an analog sub-band approach
- Deployment in space highly likely in the future due to increasing RFI environment and desires for higher radiometric accuracy
- Work currently continuing as part of a new IIP project led by Univ. of Michigan
- Exploring proposal for Hydros instrument under this project

